

1 Elemental composition, iron mineralogy and solubility of

anthropogenic and natural mineral dust aerosols in

Namibia: a case study analysis from the AEROCLO-sA

4 campaign

5

2

3

Paola Formenti¹*, Chiara Giorio².³, Karine Desboeufs¹, Alexander Zherebker², Marco Gaetani⁴,
 Clarissa Baldo⁵, Gautier Landrot⁶, Simona Montebello².⁻, Servanne Chevaillier¹, Sylvain
 Triquet¹, Guillaume Siour⁵, Claudia Di Biagio¹, Francesco Battaglia¹, Jean-François Doussin⁵,
 Anais Feron¹.⁵, Andreas Namwoonde³, and Stuart Piketh³

10 11

¹ Université Paris Cité and Univ. Paris Est Creteil, CNRS, LISA, F-75013 Paris, France

12 ² Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, 13 Cambridge, CB2 1EW, United Kingdom

14 ³ Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy

4 Classe di Scienze Tecnologie e Società, Scuola Universitaria Superiore IUSS, 27100, Pavia,
 Italia

17 ⁵ Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France

18 ⁶ Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France

⁷ Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, 41125 Modena, Italy

21 ⁸ Sam Nujoma Marine and Coastal Resources Research Centre, University of Namibia,

22 Henties Bay, Namibia

23 9 NorthWest University, Potchefstroom, South Africa

24 \$ now at INRAE

25 26

*Correspondence to: paola.formenti@lisa.ipsl.fr

27 28

29

30

31

32

33

34 35

Abstract

This paper presents the results of three weeks of aerosol sampling at the Henties Bay coastal site in Namibia during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) field campaign in August-September 2017. The campaign coincided with a transition period between two synoptic regimes and corresponded to a significant change in the aerosol composition measured at the site and in particular of that of mineral dust. During August, the dust was natural windblown from the southerly gravel plains with a composition consistent with

36 that previously observed in Namibia. In September, the dust was fugitive from anthropogenic

37 mining and possibly minor contribution of smelting emissions in northern Namibia or as far as

the Copper Belt in Zambia, one of the regional hotspot of pollution.

Chemical analysis of filter samples highlights the difference in elemental composition, in particular heavy metals, such as As, Cu, Cd, Pb, and Zn, but also silicon, in the anthropogenic dust. The metal solubility of the natural dust was higher, including that of iron. In addition to the higher content of iron oxides and the larger size of particles in the anthropogenic dust, we found that the iron solubility, and, more in general, the metals' solubility, correlated to the high concentrations of fluoride ion which are attributed to marine emissions from the Namibian shelf. These results highlight in a renewed manner the importance of ocean-atmosphere exchanges affecting both the atmospheric composition and the marine biogeochemistry in the Benguela region.

1 Introduction

 Mineral dust is an abundant component of the global atmosphere (Kok et al., 2023). Dust particles in the atmosphere are released by the natural wind erosion of natural arid and semi-arid areas of the globe. However, global dust emissions are also contributed by anthropogenic activities such as labouring of bare soils for agriculture, pasture or construction, but also fugitive dust from mining and road traffic activities (Knippertz and Stuut, 2014). Mineral dust is a strong regulator of the Earth's climate and environment (Kok et al., 2023). In the atmosphere, it contributes to both the direct and indirect radiative effects on climate by scattering and absorbing solar and terrestrial radiation and forming cloud droplets in the liquid and ice phases (Kok et al., 2023). It also affects the atmospheric composition and oxidative capacity by acting as a source or a reactive sink of species from the gas phase (Usher et al., 2003). It also acts as an irritating agent for the upper respiratory system and a vector of bacteria and infections (Adebiyi et al., 2023). By deposition, mineral dust can provide nutrients and pollutants to the sea water, changing the ocean's primary production (Knippertz and Stuut, 2014).

These considerations apply to the west coast of southern Africa, and Namibia in particular, a hyper-arid climate where many dust sources co-exist (Vickery et al., 2013). Natural mineral dust is emitted from coastal riverine sources, salty pans such as the Etosha and large gravel plains ubiquitous around the country (Vickery et al., 2013; Dansie et al., 2017; Von Holdt et al., 2018; Klopper et al., 2020; Shikwambana and Kganyago, 2022; Desboeufs et al., 2024). These sources are active throughout the year as emissions occur under various wind regimes (Von Holdt et al., 2018). Natural mineral dust from Namibia is transported within the shallow boundary layer but being able to reach as far as Eastern Antarctica through long-range transport (Gili et al., 2022). Previous research in Namibia has shown that natural mineral dust from the coastal riverbeds and the gravel plains might contribute to oceanic productivity, particularly along the coast (Dansie et al., 2022). This research also pointed to iron as a highly soluble element in both the soil and windblown aerosol fraction and the control for the impact of dust on oceanic productivity (Dansie et al., 2017a; 2017b; 2018; Desboeufs et al., 2024).

76 2022). Increased human activities and coastal developments are quickly affecting the air 77 quality but also the aquatic environment and biodiversity (Micella et al., 2024). Indeed, and despite its low population, Namibia also has intense and emerging economic activities such as 78 79 mining (various heavy elements, including uranium; Mileusnić et al., 2014; Sracek, 2015; Liebenberg-Enslin et al., 2020) and marine traffic transporting merchandise along the coast of 80 Africa and towards South America (Tournadre, 2014; Klopper et al., 2020). These activities 81 82 release fugitive dust from the mine locations as well as from the numerous road constructions 83 from and to the major national harbour, Walvis Bay (https://mwt.gov.na/projects; last accessed 84 26/11/2024). In Namibia, the accumulation of heavy metals in the shore and coastal waters due to coastal mining (Onjefu et al., 2020) has been previously documented (Sylvanus et al., 85 2016; Omoregie et al., 2019; Nekhoroshkov et al., 2021). Furthermore, in the austral 86 87 wintertime, Namibia is affected by anti-cyclonic circulation, resulting in the transport of light-88 absorbing particles, likely from forest fires and mining areas such as the Zambian Copper Belt 89 (Formenti et al., 2018; Aurélien et al., 2022; Martinez-Alonso et al., 2023; Kříbek et al., 2023). 90 The composition of these emissions is little characterised to date while having the potential for alter the oceanic productivity and microbial biogeochemistry (Adriano, 2001; Jordi et al., 2012; 91 92 Mahowald et al., 2018; Yang et al. 2019). In this paper, we present a case study analysis of the differences and similarities of the 93 94 composition of natural and anthropogenic mineral dust sampled during the ground-based field 95 campaign of the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) project 96 (Formenti et al., 2019). The campaign was conducted in August-September 2017 in Henties Bay (22°6'S, 14°30'E; 20 m above mean sea level) along the Namibian coast. 97 Based on analysis of the chemical composition and meteorological fields, we demonstrate the 98 99 origin of the anthropogenic dust and contrast its elemental composition, iron mineralogy and 100 solubility, and the type of organic matter with respect to that of natural dust measured at the 101 beginning of the campaign. Our analysis focusses on the iron mineralogy and solubility but includes, for the first time the evaluation of the solubility of heavy metals transported with these 102

Furthermore, coastal pollution is an emerging issue of the present-day world (Strain et al.,

2 Experimental

emissions.

103

104

The AEROCLO-sA field campaign took place from 21 August to 13 September 2017 at the Sam Nujoma Marine and Coastal Resources Research Centre (SANUMARC) of the University of Namibia at Henties Bay (Formenti et al., 2019). This sampling site, operated on the long-term as described by Formenti et al. (2018) and Klopper et al. (2020), was augmented with the

- 109 PortablE Gas and Aerosol Sampling UnitS (PEGASUS; https://pegasus.aeris-data.fr/; last
- accessed 24/01/2025) mobile facility for the time of the campaign.
- 111 The PEGASUS facility consists of two marine containers (20-feet long) customized and
- 112 equipped for atmospheric research (Formenti et al., 2019). Air sampling is performed with two
- 113 high-volume aerosol inlets delivering approximately 450 L min⁻¹ each. At wind speeds between
- 114 5 to 10 m s⁻¹, typical for coastal Namibia (see Figure S1), sampling is almost isokinetic for
- 115 particles up to 40 µm in aerodynamic diameter (Rajot et al., 2008), which hereafter we named
- 116 total suspended particulate (TSP). The total sampled flow rate is distributed to online analysers
- 117 and to multiple- and single-stack sample collection units for off-line analysis of the bulk and
- 118 size-resolved chemical and mineralogical composition, soluble fraction and mixing state. The
- 119 details of the online instrumentation relevant to this publication are listed in Table S1 in the
- 120 supplementary material.

2.1 Sample collection

- 122 During the campaign, aerosol samples were collected both during day (approximately 07:00-
- 123 17:00 UTC) and night time (approximately 17:30-06:30 UTC). The sampling duration was
- 124 marginally adapted in real-time to the nature and the aerosol load of air masses using the
- 125 readings of the local wind speed and direction and of the aerosol mass concentration, also
- 126 measured online.

- 127 Four custom-made filter holders were used in parallel for collecting aerosols in the TSP
- 128 fraction. These were loaded with (i) one Teflon filter (Zefluor®, 2-µm pore size diameter, 47-
- 129 mm filter diameter); (ii) two polycarbonate membranes (Nuclepore®, 0.4-µm pore size
- 130 diameter, 37-mm and 47-mm filter diameter, respectively), and (iii) a quartz filter (Pall,
- 131 2500QAT-UP Tissuquartz, 47-mm filter diameter). The average sampling flow rate varied
- 132 between 20 and 30 L min⁻¹.
- $\,$ Two samples of the composition of particles smaller than 1 μm in diameter (hereafter named
- 134 PM₁ size fraction) were collected in parallel using two 4-stage Dekati® PM₁₀ Impactors, both
- operated at 10 L min⁻¹. For these two samplers we used 25-mm polycarbonate membranes on
- three impactor stages (> 10 μ m, 10-2.5 μ m and 2.5-1 μ m) while the final filter stage, where the
- PM_1 fraction is collected, was a polycarbonate membrane (Nuclepore®, 0.4- μ m pore size, 47-
- mm filter diameter) and a quartz filter (Pall, 2500QAT-UP Tissuquartz, 47-mm filter diameter),
- 139 respectively.
- 140 Before the campaign, Teflon and quartz membranes were cleaned for sampling organic
- 141 aerosols. Teflon membranes were rinsed with dichloromethane and baked at 100°C for 10
- 142 minutes. Quartz membranes were baked at 550°C for 12 hours. Both were conditioned in pre-
- baked aluminium foils. The polycarbonate membranes were used for measuring the inorganic

- and water-soluble fraction composition. The 37-mm and 25-mm membranes were used as
- 145 purchased, while the 47-mm ones were acid-washed according to the protocol described in
- 146 Desboeufs et al. (2024). All material was sealed and opened only before collection.
- 147 Immediately after exposure, all samples were sealed and stored at -18°C in the deep-freezer
- available in the PEGASUS facility, from which they were transported back to the laboratory.
- 149 TSP filter samples were collected between 21 August and 12 September 2017, while PM₁
- 150 samples were collected from 26 August 2017 onwards. In total, 36 TSP and 31 PM₁ samples
- were collected per filter type during the field campaign (including blanks).

2.2 Sample analysis

152

153

2.2.1 Elements and water-soluble ions

- 154 The analysis of the elemental and water-soluble ion concentrations was performed at LISA
- 155 according to the protocols previously detailed in Klopper et al. (2020) and Desboeufs et al.
- 156 (2024). The elemental concentrations of 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr,
- 157 Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Pb, Nd, Cd, Ba) were measured by wavelength-dispersive X-
- 158 ray fluorescence (WD-XRF) using a PW-2404 spectrometer (Panalytical, Almelo,
- 159 Netherlands). The instrument was calibrated with mono- and bi-elemental certified elemental
- 160 standards (Micromatter Inc., Surrey, Canada). The concentrations of light-weight elements (Na
- 161 to Ca) in the TSP fraction were corrected for X-ray self-attenuation as described in Formenti
- 162 et al. (2010), assuming a mean diameter of 4.5 µm to represent the average coarse particle
- 163 size. Elements heavier than Ca, as well as concentrations measured in the PM₁ fraction, were
- 164 not corrected. The measured atmospheric concentrations are expressed in ng m⁻³, and the
- relative analytical uncertainty was evaluated as 10 %.
- 166 The analysis of the water-soluble fraction was performed by extracting the filters with 20 mL of
- ultrapure water (MilliQ® 18.2 MΩ.cm) for 30 minutes. The solution was divided into two sub-
- 168 samples filtered to 0.2 µm of porosity (Nuclepore). One half was analyzed by Ion
- chromatography (IC) using a Metrohm IC 850 device equipped with a column MetrosepA supp
- 170 7 (250/4.0 mm) for anions and with a Metrosep C4 (250/4.0 mm) for cations. The IC analysis
- 171 provided the concentrations of the following water-soluble ions: F^- , formate, acetate, MSA-
- 172 (methanesulphonic acid), Cl⁻, NO₃⁻, SO₄²⁻, oxalate, Na⁺, NH₄⁺, K⁺, Ca²⁺ and Mg²⁺. A
- calibration with certified standard multi-ions solutions of concentrations ranging from 5 to 5000
- ppb was performed and, the uncertainty of the analysis was estimated to be 5%.
- 175 The second half of the solution was acidified to 1% with ultrapure nitric acid (HNO₃) and
- 176 analysed by a combination of inductively coupled plasma-atomic emission spectroscopy (ICP

177 AES) using Spectro ARCOS Ametek® ICP-AES and by high-resolution inductively coupled 178 plasma-mass spectrometry (HR-ICP-MS) using a Neptune Plus™ instrument by Thermo Scientific™ as described in Desboeufs et al. (2024). The calibration curve was performed using 179 standard multi-element solutions ranging from 1 to 1000 ppt. The elemental fractional solubility 180 (FS) for element is calculated as the ratio between the dissolved and the total concentration. 181 Organic carbon (OC) and elemental carbon (EC) were measured using a thermo-optical 182 carbon analyser (Sunset Laboratory Inc.) on a 1.5 cm² filter following the EUSSAR-II protocol 183 (Cavalli et al., 2010). The Sunset analyzer was calibrated using a sucrose solution (purity > 184 185 99.5 %) in the concentration range between 0.42 µg cm⁻² and 40 µg cm⁻². The limit of 186 quantification for total carbon and organic carbon is henceforth estimated to be equal to 0.42 187 μg cm⁻². An instrumental blank and a control point with a sucrose solution at 10 μg cm⁻² were 188 done at the beginning of each day of analysis. OC and EC concentrations are automatically calculated with the software OCBC835 (Sunset Laboratory). The optical split point was 189 190 manually verified to ensure their assignment. All the concentration values presented in this paper were corrected for the average 191 concentration measured for their corresponding analytical blanks, which was almost equal to 192

2.2.2 Iron mineralogy

the limit of detection.

193

194

The quantification of iron oxides and the partitioning of iron species in the II- and III-oxidation state was performed by X-Ray Absorption (XAS) analysis at the Fe K-edge. Analysis was performed on the Teflon TSP filters only as the concentrations of the PM₁ filters were not high enough for this kind of analysis.

XAS analysis was conducted at the SAMBA (Spectroscopies Applied to Materials based on Absorption) line at the SOLEIL synchrotron facility in Saclay, France (Briois et al., 2011) according to the protocols and procedures previously presented in Formenti et al. (2014) and Caponi et al. (2017). A Si(220) double-crystal monochromator was used to produce a monochromatic X-ray beam, which was 4000 x 1000 µm² in size at the focal point. The energy of the X-ray beam was calibrated with an external Fe foil standard before the experiments. The

energy range was scanned from 7050 eV to 7350 eV at a step resolution of 0.2 eV.

Aerosol samples were mounted in an external setup. A portion of each aerosol filter sample
was cut and mounted on a carton board holder with 5 available positions and analysed in
fluorescence mode without prior preparation. The number of scans per sample was set
between 50 and 200, depending on the iron concentration, to improve the signal-to-noise ratio.
One scan acquisition lasted approximately 100 seconds for a total of 1.3 hours to 5.5 hours of
measurements for 50 to 200 scans.

The spectral analysis was conducted with the FASTOSH software package developed at 212 213 SAMBA. As described in Wilke et al. (2001) and O'Day et al. (2004), the oxidation state and the bonding environment of Fe in dust samples give rise to different features in the XAS 214 spectra. In the pre-edge region, the shape of the XAS spectra is determined by electronic 215 transitions to empty bound states, which are strongly influenced by the oxidation state of the 216 217 absorbing atom but also by the local geometry around the absorbing atom due to hybridization effects. Wilke et al. (2001) found that for Fe(II)-bearing minerals, the position of the centroid of 218 219 the pre-edge is found at 7112.1 eV, whereas it is at 7113.5 eV for Fe(III)-bearing minerals. The 220 position of the rising edge, which also depends on the oxidation state, is found at approximately 7120 eV. In the X-ray Absorption Near Edge Structure (XANES) region, extending 221 approximately 50 eV above the K-edge peak, features are determined by multiple-scattering 222 223 resonances of the photo-electron ejected at low kinetic energies. 224 The speciation of Fe was obtained by the least-square fit of the measured XANES spectra 225 based on the linear combination of mineralogical references. Fits were conducted on the first 226 derivative of the normalized spectral absorbance in the energy region between 7100 to 7180 eV, corresponding to -30 and +50 eV of the K-edge. Only the fits with a χ^2 closest to 1 were 227 retained for further analysis. 228 229 The reference standards were chosen based on the expected iron mineralogy in the area 230 (White et al., 2007; Heine and Völkel, 2010; Formenti et al., 2014; Sracek, 2015; Zhang et al., 231 2022). Standards for clays (illite and montomorrilonite) and iron oxides as goethite, magnetite and hematite were taken from Formenti et al (2014) and Baldo et al. (2020). The ferrihydrite 232 standard was derived by the database of the Advanced Light Source, Lawrence Berkeley 233 National Lab (S. Frakra, pers. comm.). Standards for metal-ligand complexes expected to form 234 in fog droplets and deliquescent aerosol at high RH (Giorio et al., 2022) is provided in Table 235

2.2.3 Organic analysis

S2 in the supplementary material.

236

237

238239

240241

242

243

244245

246

The water-soluble fraction of organic aerosols (WSOC) was extracted, purified using hydrophobic resin (Bond Elut ppl) and analysed by high-resolution mass spectrometry (HRMS) namely by hybrid LTQ-Orbitrap equipped with electrospray source (ESI) operated in negative ion mode. All the samples were directly injected into the ESI source using a syringe pump. In each case spectra were recorded in triplicates in two mass diapasons to decrease the number of ions in the detector: 50-500 m/z and 150-700 m/z. Raw spectra were treated following the laboratory procedure reported in Zherebker et al. (2024). Files were converted to *.mzML format using msconvert with vendor-recommended peak-picking algorithm (https://proteowizard.sourceforge.io/; last accessed 18/12/2024), which was suitable for a

- 247 series of in-house written Python scripts which included de-noising, calibration, formulae
- 248 assignment, and blank subtraction. Only formulae presented in triplicates were retained.
- 249 Diapasons were combined with removing lower-intensity duplicates. Formulae assignment
- 250 was performed considering only single-charged ions, ignoring anion-radicals with the following
- 251 atomic constraints: O/C ratio ≤ 2, 0.3 < H/C ratio < 2.5; element counts [1 < C ≤ 60, 2< H ≤
- 252 $100, 0 < O \le 60, N \le 2, S \le 1$]. Each formula was attributed to the tentative chemical class
- 253 (Table S4) based on the constrained aromaticity index (Al_{con}) calculated according to
- 254 Zherebker et al. (2022). In addition, the double bond equivalent (DBE) has been calculated,
- 255 which represents the sum of sp² and sp bonds and cycles. Further details of the mass-
- spectrometry results are provided in Text S1 in the supplementary material.

257 2.3 Ancillary products

258 2.3.1 Air mass back trajectories

- 259 Three-dimensional air mass back-trajectories ensemble are calculated using the NOAA HYbrid
- 260 Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT; Draxler and Rolph, 2015).
- 261 Weather Research Forecasting Model (WRF, version 3.71; Skamarock et al., 2008) forced by
- 262 Operational Global Analysis data (NCEP: National Centers for Environmental Prediction;
- 263 GDAS: Global Data Assimilation System, https://rda.ucar.edu/datasets/d083002, last
- accessed 10/01/2025) was used to simulated hourly meteorological data at 50km and 9km
- 265 horizontal resolution.

266 2.3.2 Atmospheric circulation

- 267 The atmospheric circulation and composition at the regional scale from 21 August to 13
- 268 September 2017 was further investigated using the Copernicus Atmospheric Monitoring
- 269 Service (CAMS) reanalysis (Inness et al., 2019), available every 3 h from 00:00 to 21:00 UTC.
- 270 The spatial resolution is approximately 80 km and 60 pressure levels (37 of which are below
- 271 20 km and 20 below 5 km). The atmospheric composition is described by analysing the total
- 272 aerosol optical depth (AOD) at 550 nm and the mass mixing ratio of dust and sulphate
- 273 aerosols. The atmospheric circulation is described by analysing the near-surface (10 m) wind,
- 274 to highlight emission processes and local transport, and the geopotential height at 700 hPa, to
- 275 highlight the large-scale circulation and long-range transport. Atmospheric composition and
- 276 circulation data are averaged at the daily time scale.

277 2.3.3 Positive matrix factorisation analysis

- 278 Positive Matrix Factorisation (PMF) (Paatero, 1997; Paatero and Tapper, 1994) was applied
- 279 to chemical composition data (OC, EC, inorganic ions and total metals) of TSP and PM1
- 280 samples using the software EPA PMF 5.0. Different factor solutions were investigated in the
- 281 range of 3 to 8 factors, starting from 10 different seeds. The 4-factor solution and the 3-factor

283

284

285

286

287

288

289

290

291292

293

294295

296

297

298

299

300

301 302

303 304

305

306

307

308

309

310311

312313

314

315

316

solution were selected for TSP and PM₁, respectively, based on the inflexion point of Q/Qexp and chemical interpretation of the resulting factor profiles (loadings). The selected solutions were run again from 100 different seeds, and the solutions with the lowest Q were selected. Rotational ambiguity was investigated by changing the Fpeak parameter from 0 to \pm 0.5 and \pm 1. The solutions with Fpeak = 0 were selected, and bootstrap analysis was performed using a number of bootstraps of 100 and a minimum r-value of 0.6.

3 Results

3.1 Air mass origin and local meteorology

Chazette et al. (2019) and Gaetani et al. (2021) showed that mid-tropospheric air masses during the field campaign were characterized by three distinct periods. A first period (P1; 22-28 August 2017) when air masses were southerly and characterized by low aerosol content and large particles. From 23 to 25 August, the circulation in the middle troposphere was characterized by the reinforcement of the South Atlantic anticyclone, leading to prevailing south-westerly winds above Namibia (Figure S2). From 26 to 28 August, the transit of a disturbance in the Southern Ocean was accompanied by the installation of the continental high and prevailing north-westerly winds above Namibia (Figure S2). A second period (P2; 29 August-1 September 2017) when the circulation was characterized by the weakening of the South Atlantic anticyclone and the reinforcement of the continental high (Figure S2), associated with a northerly/easterly flow and transport of recirculation of a higher load of aerosols associated with biomass burning. The circulation pattern remained the same on the third period (P3; 3-12 September 2017), but the aerosol content further increased. After the transit of a cut-off low in the upper troposphere on 2-4 September (Flamant et al., 2022), the large-scale circulation was dominated by the further reinforcement of the continental high and, on the 8-9 September, by the installation of a trough over the South Atlantic, leading to favourable conditions for the recirculation of continental aerosol towards Namibia. The same synoptic circulation was observed at the surface level. Air mass back trajectories (Figure S3) show that the air flow at the surface level was southerly during P1 and P2 but shifted to north-easterly (continental) after 2 September (P3), when the frequency of the anti-

(Figure S3) show that the air flow at the surface level was southerly during P1 and P2 but shifted to north-easterly (continental) after 2 September (P3), when the frequency of the anticyclonic circulation towards Henties Bay increased. Continental air masses generally took more than 2 days to reach the site. In the last two days of transport, they moved along the coast or recirculated around Henties Bay, alternating the S-SW and NW-NNW directions. In a few cases, and in particular on 11 September, the transport of continental air masses was more direct and within two days from Henties Bay. The record of local winds measured during the campaign (Figure S1 in the supplementary material) testifies of the frequent recirculation. Strong winds (average 5 m s⁻¹, and up to 10 m s⁻¹) came, alternatively, from the S-SW direction

318 319

320

321

322

323

324 325

326

327

328 329

330

331

332

333

334

335 336

337

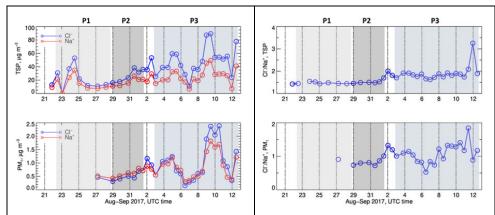
(20-22 August, 29-31 August, 6-9 September, 11 September, grey boxes in Figure S1) and the NW-NNW direction (23-28 August, 1-5 September, 10 September, 12-13 September). Occasionally, a gentle land breeze (easterly winds below 2 m s⁻¹) was observed before sunrise or after sunset. In general terms, as discussed in Giorio et al. (2022), the local meteorological conditions at Henties Bay during the campaign were characterized by remarkable stability in terms of temperature (around 12 °C) and humidity (RH ~95%), while a persistent stratocumulus cloud deck kept solar irradiance below 600 W m⁻².

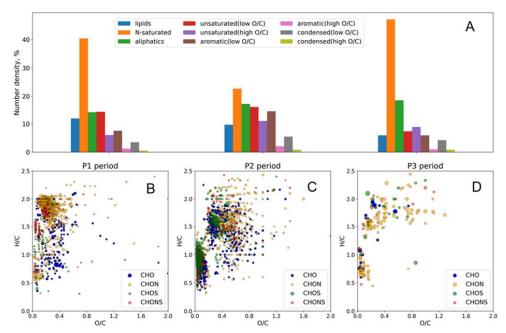
Aerosol composition and origin

The summary statistics of the aerosol composition is reported in Table S3 as supplementary information. The TSP chemical composition was dominated by the sea salt tracers, Na⁺ and Cl⁻ (average \pm standard deviation concentrations of 22 \pm 11 μg m⁻³ and 39 \pm 21 μg m⁻³, respectively), as well as SO_4^{2-} (9.1 \pm 4.3 μ g m⁻³), Mg^{2+} (3.9 \pm 2.0 μ g m⁻³), K^+ (1.2 \pm 0.6 μ g m⁻³) and Ca²⁺ (1.7 \pm 0.8 μ g m⁻³). In terms of metals and metalloids, Al (0.6 \pm 0.4 μ g m⁻³), Fe (0.6 \pm $0.4~\mu g~m^{-3}$), and Si $(2.5\pm1.3~\mu g~m^{-3})$ had the highest concentrations. The mean OC and EC concentrations were $3.2 \pm 1.5 \ \mu g \ m^{-3}$ and $0.2 \pm 0.2 \ \mu g \ m^{-3}$, respectively. The concentrations of methanesulfonic acid (MSA), tracer of marine biogenic productivity, averaged at 61 ± 26 ng m⁻³. In the PM₁ fraction, due to the low flow rate used for sampling (10 L min⁻¹), only major elements and ions were detected. Concentrations in the PM₁ fraction were generally lower than in the TSP.

3.2.1 Marine aerosols

Figure 1 presents the time series of the elemental concentrations of Na⁺ and Cl⁻ and their ratios (Cl-/Na+) in the TSP and PM1 fractions. 338




Figure 1. Left panel: Time series of the elemental concentrations of Cl and Na* in the TSP and PM1 fractions. Right panel: Time series of elemental ratio of Cl⁻/Na⁺ in the TSP and PM₁ fractions.

The concentrations of Na⁺ and Cl⁻, strongly correlated as expected, showed a relatively constant background of approximately 10 μg m⁻³ (TSP) and 0.3 μg m⁻³ (PM₁), and intense peaks of concentrations. In the TSP fraction, the Cl⁻ concentration was up to 80 μg m⁻³. The Cl⁻/Na⁺ ratio was of the order of 1.5 in the P1 and P2 periods, and of the order of 1.8 afterwards. In the PM₁ fraction, the Cl⁻ concentration reached 2.5 μg m⁻³. The Cl⁻/Na⁺ ratio, little documented during P1, was around 0.7, while it increased between 1 and 1.8 during P2 and P3. Values of the order of 1.5-1.8 are consistent with the composition of local seawater (Giorio et al., this issue) and average sea spray (Seinfeld and Pandis, 2006), as well as the previous results by Klopper et al. (2020).

The mass concentration of organic carbon (OC) through the campaign was strongly associated with Na⁺ as well as Cl⁻ (not shown). The OC/Na⁺ ratio was variable and ranged between 0.07 and 0.3, consistent with values reported by Frossard et al. (2014) for marine aerosol types. The molecular analysis of the organic composition provides insights into the sources affecting the OC/Na⁺ ratio during the campaign (Figure 2).

Figure 2. Population density of all molecular compositions based on Alcon classes (a), and van Krevelen diagrams for only unique molecular assignments in samples under study in the three periods (b-d), where unique formulae were determined only in a sample from the designated period. The size of the points reflects relative intensities in the mass spectra (not used in the analysis).

The differences in the molecular composition of samples from the P1-P3 periods are depicted in the van Krevelen diagrams (Figure 2b-d), which highlight the unique molecular composition

366

367

368

369

370371

372

373

374375

376377

378

379

380

381

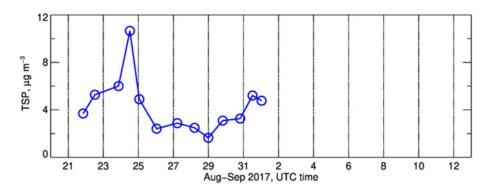
382

383

384

385

386


387

of each period. P1 was dominated by saturated and low oxidized (O/C < 0.3) CHO and CHON compounds, which occupy about 60% of the total molecular space (Figure 2). This may indicate the high contribution of biogenic fatty acids and protein-derived compounds (Bikkina et al., 2019). Their cumulative contribution in P2 decreased to about 40%, while a significant increase in the contribution of oxidized saturated compounds (O/C > 0.3) as well as highly unsaturated (Alcon > 0.5) compounds was observed. Moreover, reduced (low O/C) saturated compounds appear to be unique for the P1 period (Figure 2b). This supports the biogenic source brought by south-westerly winds. Further, the contribution of continental dust with clear anthropogenic contribution is reflected as unique highly unsaturated compounds in the P2 period as well as an increase in S-containing compounds (Figure 2c). P3 was depleted with highly unsaturated compounds with a relative dominance of saturated N-containing compounds. The aerosol sources are similar between the P2 and P3 periods, which resulted in an insignificant amount of unique molecular assignment in the latter (Figure 2d). In addition, the double bond equivalent vs. molecular mass diagram in the supplementary material indicates an increase in the contribution of biomass-burning aerosols and possibly sulphateenriched dust from smelting in the P2-P3 periods compared to the P1 period, which is in line with the air mass origin. Further details of the organic composition are reported in the supplementary materials.

3.2.2 Fluoride concentrations

The P1 and P2 periods were also characterised by extremely high concentrations of fluoride (up to 10 μ g m⁻³) as shown in Figure 3, in line with what reported by Klopper et al. (2020) for the PM₁₀ aerosols measured during 2016 and 2017 at the site. In September (P3), the concentration of F⁻ dropped to zero, as a consequence of the change in the origin of the air masses transported to the site.

Figure 3. Time series of the elemental concentrations of F⁻ in the TSP fraction during the field campaign.

389 390

393

394

395

396

397

398

399

400

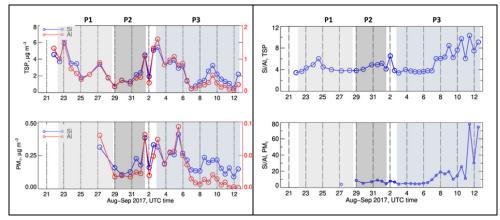
401

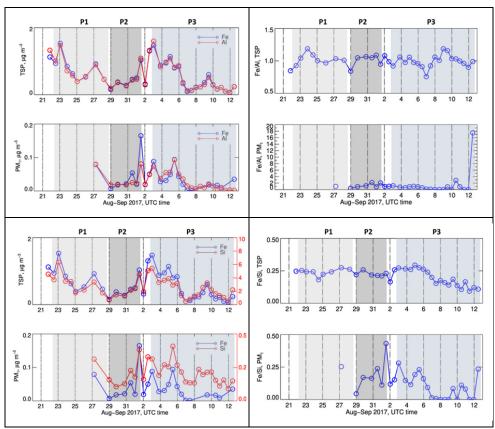
402

403 404

405

406


407


Fluoride is a natural occurring ion in marine environments as well as in mineral dust (Fuge, 2019). In Namibia, the release of dissolved fluoride to the atmosphere is due to the evaporation of fluoride-rich groundwater (Sracek et al., 2015) or the erosion of mineral deposits of calcium fluoride (CaF₂, Onipe et al., 2020). Fluoride is present in significant amounts (> 1 wt.% F) in francolite. carbonate fluorapatite mineral (typical formula Ca_{4.7}Na_{0.2}Mg_{0.1}(PO₄)_{2.6}(CO₃)_{0.4}F_{1.28}), which can be found in phosphorite deposits on the Namibian shelf, notably in the area between 23° and 25.5°S south of Henties Bay (Compton and Bergh, 2016; Mänd et al., 2018). This is likely to be the origin of the excessive fluoride concentrations observed during the P1 period of the campaign. Not only the origin of air masses detected at Henties Bay coincided with the locations of the marine deposits, but during P1 the fluoride content correlated with major marine tracers (Na, Cl, S), and with calcium, both its sea salt and non-sea-salt fractions (nss-Ca²⁺/F⁻ ratio ranging from 0.1 to 0.3, as in Klopper et al. (2020)), as well as with P, K and Sr, the latter can replace Ca in the francolite mineral structure (Compton and Bergh, 2016; Rakovan and Hughes, 2000).

3.2.3 Mineral dust composition

Figure 4 presents the time series of the elemental concentrations of Al, Si and Fe, major tracers of mineral dust, as well as of their ratios (Si/Al, Fe/Al and Fe/Si) in the TSP and PM_1 fractions.

Figure 4. Left panel, from top to bottom: Time series of the elemental concentrations Al, SI and Fe in the TSP and PM₁ fractions. Right panel from top to bottom: Time series of elemental ratio of Si/Al, Fe/Al and Fe/Si in TSP and PM₁ fractions.

The elemental concentrations of Si and Al were up to 6 and 1 μ g m⁻³ in the TSP fraction and up to 410 and 90 ng m⁻³ in the PM₁ fraction, respectively. In the P1 and P2 periods, and with the exception of a peak value on 26 August, the Si/Al ratio was of the order of 3.8, consistent with the findings of Klopper et al. (2020) for natural mineral dust emitted from the Namibian gravel planes. After this date, that is during P3, the Si/Al ratio increased to values between 6 and 10 (TSP) and between 8 and 80 (PM₁), indicating a very strong enrichment with respect to the composition of the regional mineral dust.

In the TSP fraction, and regardless of the period, the Fe/Al ratio was in the range of 0.8-1.2, as previously found for the natural gravel plain dust in the area (Eltayeb et al., 1993; Klopper et al., 2020). Likewise, during P1 and P2 the Fe/Si ratio was consistent with those previous observations for mineral dust, and so was the Fe/Ca ratio (not shown), found in the range 0.2-0.8. However, during P3, the Fe/Si decreased from approximately 0.25 to 0.1, while the Fe/Ca

424 ratio increased to between 0.09-0.15 (not shown). In the PM₁ fraction, both the Fe/Al and the 425 Fe/Si ratios were more variable with time (only the September period is documented). The Fe/Al ratio was of the order of 1 as in the TSP fraction, except on the last day of the campaign 426 when the ratio reached 18. The Fe/Si was higher between 29 August and 6 September (e.g., 427 the P2 period), ranging from 0.2 to 0.4, and decreased to 0.1-0.2 in the last days of the 428 429 campaign. That corresponded to the variability of several major elements and metals (K, Mg, Co, Cu, Nd, Ni, Sr, Cd, but Zn, As and Pb in particular), whose ratio with Al were significantly 430 higher during the last days of the campaign (7-12 September, Figure S5). As for OC/Na⁺, the 431 432 aerosol mineral composition of TSP during the P3 period could be split into two sub-periods before and after 6 September, with an enrichment in metals and OC at the end of the campaign. 433

3.2.4 Source apportionment

These observations are reflected by the PMF analysis, described in Text S2 in the 435 supplementary material. Note that, despite its high concentrations, fluoride was not included 436 437 in the source apportionment because it was not measured during the whole field campaign. In the TSP fraction, the analysis separates two factors characterized by a high loading of metals. 438 The first one is a "mineral dust" factor characterized by Al, Fe, and Si, as well as Ti, Mn, Na⁺, 439 Ca²⁺, and SO₄²⁻. Its contribution, significant only during the first part of the campaign, 440 accounted, on average, for 5.8% of total TSP mass. The second factor, called "Si-rich", is 441 442 characterized by the presence of a high loading of Si, As and Pb, strongly correlated to each 443 other (r=0.97), moderate loadings of Co, Cu, Ni, Nd, Sr, Zn and EC, but not correlated to Al nor Fe, contrarily to "mineral dust". The "Si-rich" factor, significant mostly during the P3 period, 444 notably after the 6 September, accounted for 23.3% of TSP mass but was not found in the PM₁ 445 fraction where the concentrations of the majority of its tracers were very close to the detection 446 limit. This is in agreement with the fact that the fraction of coarse particles with respect to the 447 total number increased on the last days of the campaign (Figure S6 in the supplementary 448 449 material).

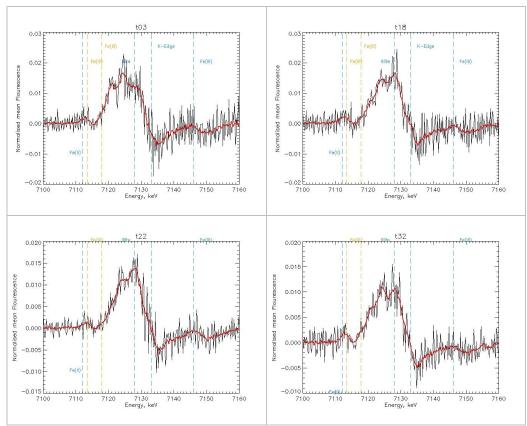
450 The chemical fingerprinting of the "Si-rich" factor is similar to that reported from windblown dust from mines in the Otavi Mountainland in Namibia (Mileusnić et al., 2014; Sracek, 2015) as in 451 the Zambian Copper Belt (Meter et al., 1999; Ettler et al., 2011; 2014; Mwaanga et al., 2019), 452 a large and important mining area in the northern part of Zambia (Aurélien et al., 2022; 453 Martinez-Alonso et al., 2023; Kříbek et al., 2023). Sracek (2015) found various associations of 454 Fe with Cu, Co, Pb, V, As, Pb, and Zn for mines in Zambia and Namibia, characterized by 455 different climates and ages of the core. At a receptor site on the Zambian Copperbelt in 456 Zimbabwe, the analysis by Nyanganyura et al. (2007) identified the mixing of mineral dust and 457 metal smelting emissions by distinguishing the long-range transport of a aerosols containing 458 Fe, Al, Si but also Co from a non-ferrous smelter component contributing to the fine aerosol 459

fraction only, and characterized by S, Zn, As, and Pb. Ettler et al. (2007) indicated that iron is 460 461 enriched both with respect to Al and Si in dust liberated from Cu-Co metal smelters in the Zambian Copperbelt. However, Meter et al. (1999) showed that enrichment is variable on an 462 event basis depending on the pyro-metallurgical processing of ores and their composition. 463 We henceforth conclude that during P1 and P2 the aerosol composition was dominated by 464 natural Namibian mineral dust sources with a composition very similar to the average dust 465 composition measured at the same site in 2016-2017 (Klopper et al., 2020) and reaching the 466 467 site within the southerly air flow. Conversely, during the last part of P3, the dust reaching 468 Henties Bay was fugitive material from anthropogenic activities. The air masses during the 469 second part of P3 could originate as far as from the Zambian Copper belt. 470 These conclusions are further corroborated by the CAMS reanalysis shown in Figure S7 in the supplementary material. During P1 and P2 the dust mass mixing ratio reached up to 120 µg 471 472 m³ (100 µg kg⁻¹ on the CAMS map) at the surface in correspondence with the coastal sources in Namibia as a response to the prevailing south-easterly winds (Figure S4) dominating the 473 near-surface circulation from 23 August to 3 September. Continental dust sources were 474 activated on 22 August and 1 September, in association with south-westerly near-surface 475 476 winds, and on 28-29 August and 4-5 September, in association with near surface convergence of south-westerly and north-easterly winds. From 6 September onwards, no remarkable dust 477 478 activity was observed, while the circulation had changed (Figure S7). The CAMS reanalysis 479 also showed that the sulphate mixing ratios at the surface reached 6 µg m⁻³ (5 µg kg⁻¹ on the CAMS map) in the Zambian Copper Belt and in the urban area of Pretoria and Johannesburg 480 (Figure S7), also a known pollution hotspot (Martinez-Alonso et al., 2023). Sulphate aerosols 481 remained close to their source regions until the end P2. With the installation of the continental 482 high on the 3 September, sulphate aerosols were recirculated south-westwards towards 483 Henties Bay during P3, in particular during 10-12 September. 484

3.3 Iron mineralogy

485

486


487

488

489

The first derivative of the four XANES normalized spectra corresponding to the highest Fe concentrations measured during AEROCLO-sA are shown in Figure 5. The remaining spectra, including those of the standard minerals and compounds used for the deconvolution, are reported in Figure S8.

Figure 5. First derivative of the four XANES normalized spectra corresponding to the highest Fe concentrations measured during AEROCLO-sA (see Table S3). The spectral positions of the absorption bands of Fe(II) and Fe(III) in the pre-edge region (7112.1 to 7117.8 eV) as well as those of illite (7128 eV) and various Fe(III) minerals, including hematite (7146 eV), according to Wilke et al. (2001) are indicated by vertical intermittent lines.

Because of the small quantities of particle mass collected on the filters, the XANES spectra are rather noisy. The main features can nevertheless be explored after smoothing. They all are rather similar. In the region between 7122 and 7128 eV, two to three peaks are present with different intensities depending on the sample. The peak at 7128 eV is minor on sample T03 (P1 period) for which the peaks at 7122 and 7126 eV dominate. The peak at 7122 eV is not present afterwards. For samples T18 and T22 in the P2 and beginning of P3 periods, only the peaks at 7126 and 7128 eV are present, the intensity of the latter being higher than the one of the former, while those peaks have equal intensity on sample T032 in the P3 period. For mineral dust from northern Africa, Formenti et al. (2014) showed that the relative proportions of these peaks can be related to the type of clays, but also to the presence of iron oxides in the form of hematite (Fe₂O₃) or goethite (FeOOH). Peaks between 7132 and 7136 eV are distinctive of clays and iron oxides in the form of hematite, but are not present for

goethite. In our samples, a minor shoulder in this spectral region is observed only for a few samples (T24, T25, and T31) collected in September. On the other hand, the pre-edge region between 7110 and 7116 eV is sensitive to the iron oxidation state. The majority of our samples seem to peak around 7113-7114 eV, indicating that iron is predominantly in the Fe(III) oxidation state. Only for a few samples (T10, T25, T26, T30, and T37), the pre-edge peak is closer to 7112 eV indicating that Fe(II) could be the predominant oxidation state.

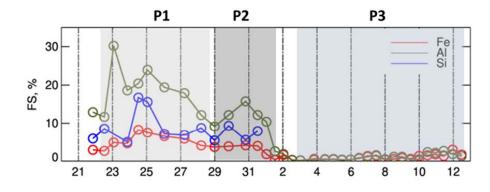
Several attempts of least square reduction were done with a variable number of references to reflect the many mineralogical forms in which iron can be found and verify the stability of the solution. While the relative proportions might have changed by a few percent, the overall repartition was found to be consistent and independent of the selected references.

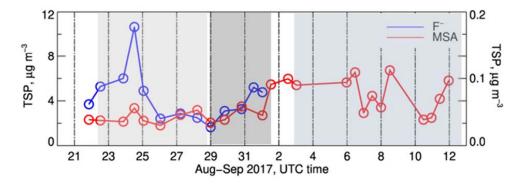
The average least-square apportionment of the total TSP elemental iron is presented in Table 1 in terms of the mean fractions par sampling period and mineralogical classes.

Table 1. Apportionment of total iron (percent mean and standard deviation) by the least-square deconvolution of the XANES spectra obtained on the filter samples indicated in the first row. Results are grouped by period and by mineral classes.

	21-31 Aug 2017 T01-T14	1-2 Sep 2017 T15-T18	2-7 Sep 2017 T20-T27	8-12 Sep 2017 T28-T38
Clays	49 ± 13	58 ± 12	53 ± 11	42 ± 10
Iron oxides	40 ± 10	36 ± 8	40 ± 9	46 ± 8
Oxalate	4 ± 4	3 ± 4	3 ± 4	5 ± 7
Pyrite	7 ± 5	3 ± 4	4 ± 5	7 ± 4

The largest contribution to the total iron is by clays, between 42 to 58%, with illite and montmorillonite contributing in equal proportions. While a clear temporal trend cannot be defined, the contribution of clays is lowest during the latest sampling period (6-12 September 2017). The second largest contribution is by iron oxides, accounting for between 38 to 45% of the total iron throughout the sampling period. The contribution of FeO, iron oxide in Fe(II) form, is low and extremely variable from sample to sample and not necessarily retrieved for samples in which a shift towards the Fe(II) seems evident in the pre-edge region (T10, T25, T26, T30, and T37). The period P3 is also characterized by the lowest contribution of Fe(III) oxide (64% vs 72-75%). Ferrihydrite (14 \pm 7% of total iron) and goethite (8 \pm 6% of total iron) showed their highest contributions during P2 (21% and 12% respectively), while hematite (8 \pm 6 of total iron) was highest in September (P3). Sracek (2015) found that the formation of secondary hematite is favoured by tropical climate conditions in mines in Zambia compared to Namibia. In contrast to northern African dust, the least-square reduction shows that the presence of magnetite is significant in the dust collected during the campaign, contributing 10-15% to the total iron oxide fraction. Magnetite can be found in sediments in the Erongo region of coastal Namibia





(Lohmeier et al. 2021), but also in anthropogenic emissions, such as for example those from metal smelting (Rathod et al. 2020). Zhang et al. (2022) investigated the light-absorbing properties and single particle composition from airborne measurements offshore central Africa during the ORACLES 2018 campaign, and attributed the presence of magnetite to the high-temperature conversion of hematite and/or goethite in biomass-burning plumes or to industrial or vehicular emissions, including from pyro-metallurgical processing in the Zambian Copperbelt. Pyrite (FeS) and Fe-oxalate complexes were also detected throughout the campaign, by their average contribution was extremely low, with the exceptions of 28-29 August 2017 (T10, approximately 19%) and 11 September (T35-36, approximately 30%).

3.4 Iron solubility

Figure 6 presents the time series of the fractional solubility for Al, Si and Fe, as well as those of fluoride (F-) and MSA measured in the TSP fraction during the field campaign.

Figure 6. Top panel: Time series of the fractional solubility Al, Si and Fe in the TSP fraction. Bottom panel: Time series of concentrations of F^- (blue) and MSA (red) in the TSP fraction. The MSA concentrations are reported on the right axis of lower panel.

557 During P1 and P2, the fractional solubility was measurable and of the order of 2-8% for Fe, 9-558 24% for Al, 5-17% for Si and 1.5-4% for Ti (not shown). After that, during P3, their fractional solubility drastically dropped to 0.2-1.7% for Fe and 0.2-2.6% for Al, whereas the fractional 559 solubility of Si and Ti was not measurable (dissolved concentrations under limit of detection). 560 A similar behaviour was observed for most of the measured trace metals (As, Co, Cr, Cu, Ni, 561 Pb, Ti, and Zn, Figure S9). 562 The percent fractional solubility of iron measured during P1 and P2 was of the same order of 563 magnitude as the lowest solubility values reported at the same sampling site for PM₁₀ dust 564 565 particles by Desboeufs et al. (2024) for the period April to December 2017, when values as 566 high as 20% were measured when MSA in the particle phase was most concentrated. These 567 authors attributed the enhanced solubility to processing (photo-reduction) of the dust by gasphase dimethyl sulphide (DMS) emitted by the coastal Benquela upwelling. In the present 568 dataset, this association cannot be made. Figure 6 shows that the MSA concentrations were 569 570 of the same order of magnitude throughout the campaign, and actually slightly more concentrated during P2 and P3, when, on the other hand, the Fe fractional solubility was the 571 lowest. Soluble Fe was also not correlated with oxalate (Pearson correlation coefficient r \sim 572 0.3), another renown organic ligands (Paris and Desboeufs, 2013). 573 On the other hand, Figure 6 shows that during P1 and P2, the temporal variability of the 574 fractional solubility of Al, Si and Fe closely followed that of the mass concentration of fluoride 575 (correlation coefficient of 0.87, 0.85 and 0.81, respectively). Fluoride has been identified to be 576 577 a good ligand of metals in aqueous solution, notably Fe(III) in comparison to Fe(II) (Connick et al., 1956; Bond and Hefter, 1980). The abundance of fluoride ions could act to facilitate the 578 579 metal complexation on the particle surfaces, potentially promoting their release from the bulk oxide and dissolution at the solid/liquid interface (Arnesen et al., 1998; Tao et al., 2022). In 580 particular, F- may contribute to the disruption of the Si-O lattice bond by forming SiF₆²⁻ 581 complexes at acidic pH (Mitra and Rimstidt, 2009). 582

4 Conclusive remarks

583

The three weeks of aerosol sampling at the Henties Bay coastal site in Namibia during the 584 AEROCLO-sA field campaign coincided with a transition period between two synoptic regimes: 585 586 the dominance of southerly air flow, associated with the reinforcement of the South Atlantic 587 anticyclone (22 to 31 August 2017) and the dominance of north-easterly air flow (1 to 12 588 September 2017), associated with the installation of the mid-tropospheric continental high. Those synoptic regimes corresponded to a significant change in the aerosol composition 589 measured at the site and in particular of that of mineral dust. During August and the first few 590 days of September, the dust was natural windblown from the southerly gravel plains with a 591

593

594

595 596

597

598

599

600

601

602

603

604 605

606

607

608

609 610

611 612

613

614

615

616 617

618 619

620

621622

623 624

625

626

627

composition consistent with that previously found in Namibia (Klopper et al., 2020). Gater, the dust was fugitive from anthropogenic mining and possibly also from smelting emissions as far as in the Zambian Copper Belt. The anthropogenic influence in the latter part of the campaign was also documented by the composition of the organic aerosol, which was rich in highly unsaturated compounds as well as saturated N-containing compounds in the latter two periods, more typical of anthropogenic pollution. A second major difference in the composition of the air masses was the high fluoride content until September 2 attributed to emissions from the marine shelf south of Henties Bay.

Taking advantage of those differences, this paper presents the first case study analysis of differences and similarities in the composition of natural and anthropogenic dust, with two key findings: (1) the elemental composition of the anthropogenic dust is enriched in silicon and heavy metals, notably As, Mn, Cu, Cd, Pb, and Zn, and depleted in Al; (2) metals in anthropogenic dust are less water-soluble than in the natural aeolian dust. In particular, the fractional solubility of iron in the natural dust ranged between 2 and 8%, but remained lower than 2% in the anthropogenic dust. This is rather unexpected when taking into account the current literature on anthropogenic dust influenced by combustion, reporting that the iron solubility would be the order of 50% (e.g., Li et al., 2017; Ueda et al., 2023). There are various possible explanations to this fact. First of all, the mineralogy of iron. The most soluble form, ferrihydrite (Journet et al., 2008; Shi et al., 2012), was more abundant in the natural dust, while the less soluble forms of iron (iron oxides such as hematite and magnetite) were more frequent in the fugitive dust, which conversely, could be more efficient in absorbing light at short wavelengths. Secondly, during the first part of the campaign, the aerosol particles were smaller in size, which is known to promote particle solubility, both directly but also in an indirect way, allowing more intense atmospheric processing (Hamilton et al., 2022). Thirdly, our results indicate in a very clear way the extent of which the solubility of iron is linked to the abundance of fluoride ions during the first part of the campaign. While we do not have insights in the mineralogical forms of the metals other than iron, the similar behaviour of their dissolved concentrations, in particular Al and Si, suggest that the marine emissions of fluoride from the Benguela shelf could play a key role in sustaining the complexation of metals dust particles and facilitate their dissolution, supplementing the processing by DMS described for iron in Desboeufs et al. (2024). Such high concentrations of F- ions are not only unexpected but also they open questions for further studies in this environment. Similarly, to what is known for chloride or bromine (Finlayson-Pitts, 2010, Simpson et al., 2015) one cannot exclude recycling F into reactive fluorinated radicals through heterogeneous processes. This call for further targeted reanalysis of the organic matter sampled during this campaign both the gaseous and particulate phases and for further laboratory work to investigate this quite poorly know https://doi.org/10.5194/egusphere-2025-446 Preprint. Discussion started: 8 April 2025 © Author(s) 2025. CC BY 4.0 License.

chemistry. Finally, our results suggest that, in the absence of processing by DMS or oceanic fluoride, the transport of mining dust, including from the Zambian Copper Belt, is unlikely to be a significant source of dissolved iron, but also of elements such as Mn, Cu and Zn, which are toxic to phytoplankton even at low concentrations, and if assimilated, could alter the oceanic productivity and microbial biogeochemistry (Adriano, 2001; Jordi et al., 2012; Mahowald et al., 2018; Yang et al. 2019).

Future work should expand these results by addressing the frequency and intensity of those occurrences on a longer time scale, as well as the mineralogy of metals and their processing by marine emissions in the laboratory.

- Data Availability. All data are made freely available by the French national service for atmospheric data AERIS-SEDOO data at https://baobab.sedoo.fr/AEROCLO/.
- 640 **Code Availability.** The FASTOSH XANES data analysis package is available for download at 641 https://www.synchrotron-soleil.fr/fr/lignes-de-lumiere/samba (last accessed: 02/03/2024).
- Author contribution. PF coordinated the AEROCLO-sA project and funding, led the field campaign and the data analysis, and wrote the manuscript with contributions from all the co-authors. SM performed PMF analysis. AZ performed ESI-HRMS analysis and analysed data. CG collected samples, supervised PMF and ESI-HRMS analyses and their data interpretation. CB contributed to the interpretation of the dust solubility and composition. KD analysed the fractional solubility measurements. MG analysed CAMS reanalysis. GS performed back-trajectories calculations. SC performed XRF analysis, ST performed IC / ICP analysis, FB and CDB performed XANES measurements under the supervision of GL AE IED. AN and SIP
- 649 CDB performed XANES measurements under the supervision of GL. AF, JFD, AN and SJP participated and facilitated the field campaign.
- 651 **Special issue statement.** This article is part of the special issue "New observations and related modelling studies of the aerosol–cloud–climate system in the Southeast Atlantic and
- 653 southern Africa regions (ACP/AMT inter-journal SI)". It is not associated with a conference.
- 654 Competing interests. Some authors are members of the editorial board of journal ACP.

655 Acknowledgements

- Authors are grateful to the AEROCLO-sA consortium for their work in the field and during the preparation of the field campaign, and SANUMARC for hosting the field campaign. The authors wish to thank AERIS (https://www.aeris-data.fr/), the French center for atmospheric data and
- 659 service, for providing the campaign website and organizing the curation and open distribution
- 660 of AEROCLO-sA data.

661 Funding support

662 This work was supported by the French National Research Agency under grant agreement n° ANR-15-CE01-0014-01, the French national program LEFE/INSU, the French National Agency 663 for Space Studies (CNES), and the South African National Research Foundation (NRF) under 664 grant UID 105958. CG's work was supported by the Supporting TAlent in 665 ReSearch@University of Padova STARS-StG "MOCAA", and a BP Next Generation fellowship 666 awarded by the Yusuf Hamied Department of Chemistry at the University of Cambridge. This 667 668 research received additional resources through the "The role of Secondary Organic Aerosols on the climate over the west coast of southern Africa (SOA-Clim)", International Research 669 Project supported by University of Cambridge and CNRS. MG was supported by the project 670 671 "Dipartimento di Eccellenza 2023–2027", funded by the Italian Ministry of Education, University and Research at IUSS Pavia. The PEGASUS facility receives funding as a national facility 672 673 (instrument national) of the CNRS INSU.

674 References

- 675 Adebiyi, A., Kok, J. F., Murray, B. J., Ryder, C. L., Stuut, J.-B. W., Kahn, R. A., Knippertz, P.,
- 676 Formenti, P., Mahowald, N. M., Pérez García-Pando, C., Klose, M., Ansmann, A., Samset, B.
- 677 H., Ito, A., Balkanski, Y., Di Biagio, C., Romanias, M. N., Huang, Y., and Meng, J.: A review of
- 678 coarse mineral dust in the Earth system, Aeol. Res., 60, 100849,
- 679 https://doi.org/10.1016/j.aeolia.2022.100849, 2023.
- 680 Adriano, D.C., Trace elements in terrestrial environments: biogeochemistry, bioavailability, and
- risks of metals. 2nd ed. New York Berlin Heidelberg: Springer, https://doi.org/10.1007/978-0-
- 682 387-21510-5, 2001.
- 683 Arnesen, A. K. M.: Effect of fluoride pollution on pH and solubility of Al, Fe, Ca, Mg, K and
- 684 organic matter in soil from Ardal (Western Norway), Water. Air. Soil Pollut., 103(1-4), 375-
- 685 388, doi:10.1023/A:1004921600022, 1998.
- 686 Aurélien, N., Ousmane, S. and Pitiya, R., Zambia's Copperbelt Area and Copper Mining: A
- 687 Review. J. Geosci. Environ. Protection, 10, 67-75. doi: 10.4236/gep.2022.103005, 2022.
- 688 Bikkina, P., Kawamura, K., Bikkina, S., Kunwar, B., Tanaka, K., and Suzuki, K.: Hydroxy Fatty
- 689 Acids in Remote Marine Aerosols over the Pacific Ocean: Impact of Biological Activity and
- 690 Wind Speed, ACS Earth and Space Chemistry, 3, 366-379,
- 691 10.1021/acsearthspacechem.8b00161, 2019.
- 692 Bond, A. M. And Hefter, G. T. (Eds.): Critical Survey of Stability Constants and Related
- 693 Thermodynamic Data of Fluoride Complexes in Aqueous Solution, Pergamon, ii,
- 694 https://doi.org/10.1016/B978-0-08-022377-3.50001-6, 1980.
- 695 Caponi, L., Formenti, P., Massabó, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier,
- 696 S., Landrot, G., Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E.,
- 697 Balkanski, Y., Prati, P., and Doussin, J.-F.: Spectral- and size-resolved mass absorption
- 698 efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study,
- 699 Atmos. Chem. Phys., 17, 7175-7191, https://doi.org/10.5194/acp-17-7175-2017, 2017.
- 700 Cavalli, F., Viana, M., Yttri, K. E., Genberg, J. and Putaud, J.-P.: Toward a standardised
- 701 thermal-optical protocol for measuring atmospheric organic and elemental carbon: the
- 702 EUSAAR protocol, Atmos. Meas. Tech., 3(1), 79–89, doi:10.5194/amt-3-79-2010, 2010.
- 703 Compton, J. S., and Bergh, E. W.: Phosphorite deposits on the Namibian shelf, Marine
- 704 Geology, 380, 290-314, https://doi.org/10.1016/j.margeo.2016.04.006, 2016.
- 705 Connick, R. E., Hepler, L. G., Hugus, Z. Z. Jr., Kury, J. W., Latimer, W. M., and Tsao, M.-S.:
- 706 The Complexing of Iron(III) by Fluoride Ions in Aqueous Solution: Free Energies, Heats and
- 707 Entropies, J. Am. Chem. Soc., 78, 1827–1829, https://doi.org/10.1021/ja01590a015, 1956.
- 708 Desboeufs, K., Formenti, P., Torres-Sánchez, R., Schepanski, K., Chaboureau, J.-P.,
- 709 Andersen, H., Cermak, J., Feuerstein, S., Laurent, B., Klopper, D., Namwoonde, A.,
- 710 Cazaunau, M., Chevaillier, S., Feron, A., Mirande-Bret, C., Triquet, S., and Piketh, S. J.:
- 711 Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine
- 712 biogenic emissions?, Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-
- 713 1525-2024, 2024.
- 714 Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V., and Šebek, O.: Tracing the spatial distribution
- 715 and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper
- 716 smelter, Copperbelt province, Zambia, Geoderma, 164, 73-84,
- 717 https://doi.org/10.1016/j.geoderma.2011.05.014, 2011.
- 718 Ettler, V., Vítková, M., Mihaljevič, M., Šebek, O., Klementová, M., Veselovský, F., Vybíral, P.,
- 719 and Kříbek, B.: Dust from Zambian smelters: mineralogy and contaminant bioaccessibility,
- 720 Environmental Geochemistry and Health, 36, 919-933, 10.1007/s10653-014-9609-4, 2014.

- 721 Finlayson-Pitts, B., Halogens in the troposphere, Anal. Chem., 82, 3, 770-776,
- 722 https://doi.org/10.1021/ac901478p, 2010.
- 723 Flamant, C., Gaetani, M., Chaboureau, J.-P., Chazette, P., Cuesta, J., Piketh, S. J., and
- 724 Formenti, P.: Smoke in the river: an Aerosols, Radiation and Clouds in southern Africa
- 725 (AEROCLO-sA) case study, Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-
- 726 22-5701-2022, 2022.
- 727 Formenti, P., S. Nava, P. Prati, S. Chevaillier, A. Klaver, S. Lafon, F. Mazzei, G. Calzolai, and
- 728 M. Chiari, Self-attenuation artifacts and correction factors of light element measurements by
- 729 X-ray analysis: Implication for mineral dust composition studies, J. Geophys. Res., 115,
- 730 D01203, doi:10.1029/2009JD012701, 2010.
- 731 Formenti, P., S. Caquineau, S. Chevaillier, A. Klaver, K. Desboeufs, J. L. Rajot, S. Belin and
- 732 V. Briois, Dominance of goethite over hematite in iron oxides of mineral dust from Western
- 733 Africa: quantitative partitioning by X-ray absorption spectroscopy, J. Geophys. Res., 119,
- 734 12740-1275, 2014.
- 735 Formenti, P., D'Anna, B., Flamant, C., Mallet, M., Piketh, S. J., Schepanski, K., Waguet, F.,
- 736 Auriol, F., Brogniez, G., Burnet, F., Chaboureau, J.-P., Chauvigné, A., Chazette, P., Denjean,
- 737 C., Desboeufs, K., Doussin, J.-F., Elguindi, N., Feuerstein, S., Gaetani, M., Giorio, C., Klopper,
- 738 D., Mallet, M. D., Nabat, P., Monod, A., Solmon, F., Namwoonde, A., Chikwililwa, C., Mushi,
- 739 R., Welton, E. J. and Holben, B.: The Aerosols, Radiation and Clouds in Southern Africa Field
- 740 Campaign in Namibia: Overview, Illustrative Observations, and Way Forward, Bull. Am.
- 741 Meteorol. Soc., 100(7), 1277–1298, doi:10.1175/BAMS-D-17-0278.1, 2019.
- 742 Frossard, A. A., Russell, L. M., Burrows, S. M., Elliott, S. M., Bates, T. S., and Quinn, P. K.:
- 743 Sources and composition of submicron organic mass in marine aerosol particles, J. Geophys.
- 744 Res, 119, 12,977-913,003, https://doi.org/10.1002/2014JD021913, 2014.
- 745 Fuge, R.: Fluorine in the environment, a review of its sources and geochemistry, Appl.
- 746 Geochemistry, 100, 393–406, doi:10.1016/j.apgeochem.2018.12.016, 2019.
- 747 Gaetani, M., Pohl, B., Alvarez Castro, M. C., Flamant, C., and Formenti, P.: A weather regime
- 748 characterisation of winter biomass aerosol transport from southern Africa, Atmos. Chem.
- 749 Phys., 21, 16575–16591, https://doi.org/10.5194/acp-21-16575-2021, 2021.
- 750 Giorio, C., Doussin, J. F., D'Anna, B., Mas, S., Filippi, D., Denjean, C., Mallet, M. D.,
- 751 Bourrianne, T., Burnet, F., Cazaunau, M., Chikwililwa, C., Desboeufs, K., Feron, A., Michoud,
- 752 V., Namwoonde, A., Andreae, M. O., Piketh, S. J. and Formenti, P.: Butene Emissions From
- 753 Coastal Ecosystems May Contribute to New Particle Formation, Geophys. Res. Lett., 49(10),
- 754 doi:10.1029/2022GL098770, 2022.
- 755 Hamilton, D. S., Perron, M. M. G., Bond, T. C., Bowie, A. R., Buchholz, R. R., Guieu, C., Ito,
- 756 A., Maenhaut, W., Myriokefalitakis, S., Olgun, N., Rathod, S. D., Schepanski, K., Tagliabue,
- 757 A., Wagner, R., and Mahowald, N. M.: Earth, Wind, Fire, and Pollution: Aerosol Nutrient
- 758 Sources and Impacts on Ocean Biogeochemistry, Annual Review of Marine Science, 14, 303–
- 759 330, https://doi.org/10.1146/annurev-marine-031921-013612, 2022.
- 760 Heine, K. and Völkel, J., Clay Minerals in Namibia and their Significance for the Terrestrial and
- 761 Marine Past Global Change Research, African Study Monographs. Supplementary Issue., 40,
- 762 31-50, publisher The Research Committee for African Area Studies, Kyoto University, 2010.
- 763 Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M.,
- Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z.,
- Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.:
- 766 The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556,
- 767 https://doi.org/10.5194/acp-19-3515-2019, 2019.
- 768 Klopper, D., Formenti, P., Namwoonde, A., Cazaunau, M., Chevaillier, S., Feron, A., Gaimoz,
- C., Hease, P., Lahmidi, F., Mirande-Bret, C., Triquet, S., Zeng, Z. and Piketh, S. J.: Chemical

- 770 composition and source apportionment of atmospheric aerosols on the Namibian coast,
- 771 Atmos. Chem. Phys., 20(24), 15811–15833, doi:10.5194/acp-20-15811-2020, 2020.
- 772 Kříbek, B., Nyambe, I., Sracek, O., Mihaljevič, M., and Knésl, I.: Impact of Mining and Ore
- 773 Processing on Soil, Drainage and Vegetation in the Zambian Copperbelt Mining Districts: A
- 774 Review, Minerals, 13, 384, doi:10.3390/min13030384, 2023.
- 775 Jordi, A., Basterretxea, G., Tovar-Sánchez, A., Alastuey, A., and Querol, X.: Copper aerosols
- inhibit phytoplankton growth in the Mediterranean Sea, Proc. Nat. Acad. Sci., 109, 21246-
- 777 21249, doi:10.1073/pnas.1207567110, 2012.
- 778 Journet, E., K. Desboeufs, S. Caquineau, & J.L. Colin, Mineralogy as a critical factor of dust
- 779 iron solubility, Geophys. Res. Letters, 35, doi:10.1029/2007GL031589, 2008.
- 780 Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen, J., Wang, W.,
- 781 Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution aerosol
- 782 interactions produce more bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749,
- 783 https://doi.org/10.1126/sciadv.1601749, 2017.
- 784 Liebenberg-Enslin, H., von Oertzen, D., and Mwananawa, N.: Dust and radon levels on the
- 785 west coast of Namibia What did we learn?, Atmos. Poll. Res., 11, 2100-2109,
- 786 https://doi.org/10.1016/j.apr.2020.05.020, 2020.
- Lohmeier, S., B. G. Lottermoser, K. Strauß, T. Adolffs, S. Sindern, D. Gallhofer, Nearshore
- 788 marine garnet and magnetite placers in the Erongo and S-Kunene regions, Namibia, Journal
- 789 of African Earth Sciences, 180, 104221, https://doi.org/10.1016/j.jafrearsci.2021.104221,
- 790 2021.
- 791 Mahowald, N.M., D. S. Hamilton, K., R. M. Mackey, J. K. Moore, A. R. Baker, R. A. Scanza,
- 792 and Y. Zhang, Aerosol trace metal leaching and impacts on marine microorganisms, Nat.
- 793 Commun., 5, 9, 2614, 10.1038/s41467-018-04970-7, 2018.
- 794 Mänd, K., Kirsimäe, K., Lepland, A., Crosby, C., Bailey, J., Konhauser, K., Wirth, R., Schreiber,
- A., and Lumiste, K.: Authigenesis of biomorphic apatite particles from Benguela upwelling zone
- 796 sediments off Namibia: The role of organic matter in sedimentary apatite nucleation and
- 797 growth, Geobiology, 16, 10.1111/gbi.12309, 2018.
- 798 Martínez-Alonso, S., Veefkind, J. P., Dix, B., Gaubert, B., Theys, N., Granier, C., et al., S-
- 799 5P/TROPOMI-derived NOx emissions from copper/cobalt mining and other industrial activities
- 800 in the Copperbelt (Democratic Republic of Congo and Zambia). Geophys. Res. Lett., 50,
- 801 e2023GL104109. https://doi.org/10.1029/2023GL104109, 2023.
- Meter, S. L., P. Formenti, S. J. Piketh, H. J. Annegarn, and M. A. Kneen, PIXE investigation of
- 803 aerosol composition in the Zambian Copperbelt, Nucl. Inst. and Meth., B150, 433–438, 1999.
- 804 Micella, I., Kroeze, C., Bak, M. P., and Strokal, M.: Causes of coastal waters pollution with
- 805 nutrients, chemicals and plastics worldwide, Marine Pollution Bulletin, 198, 115902,
- 806 https://doi.org/10.1016/j.marpolbul.2023.115902, 2024.
- 807 Michalowicz, A., Moscovici, J., Muller-Bouvet, D., and Provost, K.: MAX: Multiplatform
- 808 Applications for XAFS, Journal of Physics Conference Series (Online), 190, 4,
- 809 Doi:101088/1742-6596/190/1/012034, 2009.
- 810 Mileusnić, M., Mapani, B. S., Kamona, A. F., Ružičić, S., Mapaure, I., and Chimwamurombe,
- P. M.: Assessment of agricultural soil contamination by potentially toxic metals dispersed from
- improperly disposed tailings, Kombat mine, Namibia, J. Geochemical Exploration, 144, 409-
- 420, https://doi.org/10.1016/j.gexplo.2014.01.009, 2014.
- 814 Mitra, A., and Rimstidt, J. D.: Solubility and dissolution rate of silica in acid fluoride solutions,
- 815 Geochimica et Cosmochimica Acta, 73, 7045-7059, https://doi.org/10.1016/j.gca.2009.08.027,
- 816 2009.

- 817 Mwaanga, P., Silondwa, M., Kasali, G., and Banda, P. M.: Preliminary review of mine air
- 818 pollution in Zambia, Heliyon, 5, e02485, https://doi.org/10.1016/j.heliyon.2019.e02485, 2019.
- 819 Nekhoroshkov, P., Bezuidenhout, J., Zinicovscaia, I., Yushin, N., Vergel, K., and Frontasyeva,
- 820 M.: Levels of Elements in Typical Mussels from the Southern Coast of Africa (Namibia, South
- Africa, Mozambique): Safety Aspect, Water, 13, 3238, 2021.
- 822 Nyanganyura, D., Maenhaut, W., Mathuthu, M., Makarau, A., and Meixner, F. X.: The chemical
- 823 composition of tropospheric aerosols and their contributing sources to a continental
- 824 background site in northern Zimbabwe from 1994 to 2000, Atmos. Environ., 41, 2644-2659,
- 825 https://doi.org/10.1016/j.atmosenv.2006.11.015, 2007.
- 826 Omoregie E., E. C. Vellemu, F. Nashima, B. Mudumbi Samona Brian, G. Liswaniso Gadaffi
- 827 and K. Shimooshili, Assessment of copper levels along the Namibian marine coastline, GSC
- 828 Biological and Pharmaceutical Sciences, 7, 48-55,
- 829 https://doi.org/10.30574/gscbps.2019.7.3.0101, 2019.
- 830 Onjefu, S. A., Shaningwa, F., Lusilao, J., Abah, J., Hess, E., and Kwaambwa, H. M.:
- 831 Assessment of heavy metals pollution in sediment at the Omaruru River basin in Erongo
- 832 region, Namibia, Environ. Poll. Bioavailability, 32, 187-193, 10.1080/26395940.2020.1842251,
- 833 2020.
- 834 Onipe, T., Edokpayi, J. N., and Odiyo, J. O.: A review on the potential sources and health
- 835 implications of fluoride in groundwater of Sub-Saharan Africa, Journal of Environmental
- 836 Science and Health, Part A, 55, 1078-1093, 10.1080/10934529.2020.1770516, 2020.
- 837 Paatero, P., Least squares formulation of robust non-negative factor analysis. Chemometrics
- 838 and Intelligent Laboratory Systems, 37(1), 23-35. https://doi.org/10.1016/S0169-
- 839 7439(96)00044-5, 1997.
- 840 Paatero, P., and Tapper, U., Positive matrix factorization: A non-negative factor model with
- 841 optimal utilization of error estimates of data values. Environmetrics, 5(2), 111-126.
- 842 https://doi.org/10.1002/env.3170050203, 1994
- 843 Paris, R. and K. Desboeufs, Effect of atmospheric organic complexation on iron-bearing dust
- 844 solubility, Atmos. Chem. Phys., 13, 4895–4905, doi:10.5194/acp-13-4895-2013, 2013.
- 845 Rakovan J.F., J.M.Hughes, Strontium in the apatite structure: strontian fluorapatite and
- 846 belovite-(ce), The Canadian Mineralogist, 38 (4), 839–845, doi: 10.2113/gscanmin.38.4.839,
- 847 2000.
- 848 Rajot, J.-L., P. Formenti, S. Alfaro, K. Desboeufs, S. Chevaillier, B. Chatenet, A. Gaudichet, E.
- 849 Journet, B. Marticorena, S. Triquet, A. Maman, N. Mouget, and A. Zakou, AMMA dust
- 850 experiment: An overview of measurements performed during the dry season special
- 851 observation period (SOP0) at the Banizoumbou (Niger) supersite, J. Geophys. Res.,
- 852 doi:10.1029/2008JD009906, 2008.
- 853 Rathod, S. D., Hamilton, D. S., Mahowald, N. M., Klimont, Z., Corbett, J. J., and Bond, T. C.:
- 854 A Mineralogy-Based Anthropogenic Combustion-Iron Emission Inventory, J. Geophys. Res.,
- 855 125, e2019JD032114, https://doi.org/10.1029/2019JD032114, 2020.
- 856 Simpson, W. R., S. S. Brown, A. Saiz-Lopez, J. A. Thornton, and R. von Glasow, Tropospheric
- 857 Halogen Chemistry: Sources, Cycling, and Impacts, Chem. Rev., 115, 4035-4062, DOI:
- 858 10.1021/cr5006638, 2015.
- 859 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., Powers, J. G.,
- 860 A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University
- 861 Corporation for Atmospheric Research. doi:10.5065/D68S4MVH, 2008.
- 862 Sracek, O., Wanke, H., Ndakunda, N. N., Mihaljevič, M., and Buzek, F.: Geochemistry and
- 863 fluoride levels of geothermal springs in Namibia, Journal of Geochemical Exploration, 148, 96-
- 864 104, https://doi.org/10.1016/j.gexplo.2014.08.012, 2015.

- 865 Sracek, O.: Formation of secondary hematite and its role in attenuation of contaminants at
- 866 mine tailings: review and comparison of sites in Zambia and Namibia, Frontiers in
- 867 Environmental Science, 2, 10.3389/fenvs.2014.00064, 2015.
- 868 Strain, E.M.A., Lai R.W.S., White C.A., Piarulli S., Leung K.M.Y., Airoldi L., and O'Brien A.,
- 869 Editorial: Marine Pollution Emerging Issues and Challenges. Front. Mar. Sci. 9:918984. doi:
- 870 10.3389/fmars.2022.918984, 2022.
- 871 Sylvanus, O., Kgabi, N., and Taole, S.: Heavy Metal Seasonal Distribution in Shore Sediment
- 872 Samples along the Coastline of Erongo Region, Western Namibia, European Journal of
- 873 Scientific Research, 139, 49-63, 2016.
- Tao, Y., Ye G, Zhang H, Hu Y, Zuo Q, Wang X, Zhu S, Kang X, Zhang Y, Xiang X, et al. Effect
- of Fluoride Ions on the Surface Dissolution of Vanadium-Bearing Biotite. Separations. 9, 422,
- 876 https://doi.org/10.3390/separations9120422, 2022.
- 877 Ueda, S., Iwamoto, Y., Taketani, F., Liu, M., and Matsui, H.: Morphological features and water
- 878 solubility of iron in aged fine aerosol particles over the Indian Ocean, Atmos. Chem. Phys., 23,
- 879 10117–10135, https://doi.org/10.5194/acp-23-10117-2023, 2023.
- 880 Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on Mineral Dust, Chemical
- 881 Reviews, 103, 4883-4940, 10.1021/cr020657y, 2003.
- 882 Yang, T., Chen, Y., Zhou, S., and Li, H.: Impacts of Aerosol Copper on Marine Phytoplankton:
- 883 A Review, Atmos., 10, 414, https://doi.org/10.3390/atmos10070414, 2019.
- 884 White, K., Walden, J., and Gurney, S. D.: Spectral properties, iron oxide content and
- 885 provenance of Namib dune sands, Geomorphology, 86, 219-229,
- https://doi.org/10.1016/j.geomorph.2006.08.014, 2007.